中新网北京7月24日电 (记者 孙自法)国际知名学术期刊《自然》北京时间7月23日夜间在线发表一篇技术研究论文透露,研究人员开发出一款手腕佩戴装置(手环),能让用户通过手写动作这类手势与计算机进行交互。
这种手环装置能将手腕处肌肉运动产生的电信号转换成计算机指令,同时无需个性化校准或侵入性手术,从而助力让人类与计算机的交互更丝滑,扩大可及性规模。
该论文介绍,人类与计算机和手机这类技术装置的传统交互方式,需要使用键盘、鼠标和触屏这类输入设备进行直接接触。这类交互具有局限性,尤其是在“移动场景”(on-the-go)下。
在本项研究中,美国Meta公司现实实验室一支研究团队利用数千名受试者的训练数据开发出一个高灵敏度手环,能探测手腕处肌肉的电信号并将其转换成计算机信号。他们随后利用深度学习创建了泛型解码模型,该模型无需个体校准就能准确翻译不同的用户输入。与其他深度学习域一致,该解码模型的性能表现出尺度定律,即性能随模型架构扩大和数据增加而优化。研究团队还展示了如果根据特定个体数据进行个性化,性能就可进一步提升。因此,尺度定律和个性化的结果,为打造具有广泛应用的高性能生物信号解码器指明了方向。
最新研发的该款手环装置利用蓝牙接收器与计算机进行通讯,能识别实时手势,实现对一系列计算机交互的省力操控。这些操控可用于完成虚拟导航和选择任务,以及每分钟20.9个单词的手写文本输入(手机键盘打字速度平均为每分钟36个单词)。
研究团队指出,他们的神经运动手环为身体机能各异的人士提供了一种可穿戴的计算机通信方式。神经运动接口很适合进一步研究,以探索该技术的可及性应用,如改善行动力下降、肌无力、手指截肢、瘫痪等人群与计算机的交互。
此外,为推动今后对表面肌电信号(sEMG)和表面肌电信号模拟在更大群体中的研究,研究团队还在本次发表的论文中公开发布了一个数据库,其中包含来自300受试者对全部三项任务的逾100小时的表面肌电信号记录。(完)
hangxiaodexunlianyibancongzaoshang6dian20fenkaishi,xiankaizhunbeihui,yanjiudangtiandetianqitiaojian、feijizhuangkuang、feixingkemu。feixingxunlianjieshuhou,yaodaojiangpingshikaihui,fupandangtiandexunlianqingkuang,zhenduixingdijinxingzhaloubuque,tongshiyuximingtiandekemu。meitianyitaoliuchengzouxialai,zhishao10xiaoshiqibu。航(hang)校(xiao)的(de)训(xun)练(lian)一(yi)般(ban)从(cong)早(zao)上(shang)6(6)点(dian)2(2)0分(fen)开(kai)始(shi),(,)先(xian)开(kai)准(zhun)备(bei)会(hui),(,)研(yan)究(jiu)当(dang)天(tian)的(de)天(tian)气(qi)条(tiao)件(jian)、(、)飞(fei)机(ji)状(zhuang)况(kuang)、(、)飞(fei)行(xing)科(ke)目(mu)。(。)飞(fei)行(xing)训(xun)练(lian)结(jie)束(shu)后(hou),(,)要(yao)到(dao)讲(jiang)评(ping)室(shi)开(kai)会(hui),(,)复(fu)盘(pan)当(dang)天(tian)的(de)训(xun)练(lian)情(qing)况(kuang),(,)针(zhen)对(dui)性(xing)地(di)进(jin)行(xing)查(zha)漏(lou)补(bu)缺(que),(,)同(tong)时(shi)预(yu)习(xi)明(ming)天(tian)的(de)科(ke)目(mu)。(。)每(mei)天(tian)一(yi)套(tao)流(liu)程(cheng)走(zou)下(xia)来(lai),(,)至(zhi)少(shao)1(1)0小(xiao)时(shi)起(qi)步(bu)。(。)
山西怀仁野地现无名女尸
回忆大学时光,吴光辉感慨颇多:“我刚进校的时候,学习基础不是特别好,物理、化学、英语等课程还行,但是高数明显感觉吃力。”为了赶上其他同学,他把大量课余时间花在高数题目上,有时做完题一抬头,发现整个教室只剩下自己。